Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 8: e2300404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38564685

RESUMO

PURPOSE: Patients with germline pathogenic variants (PVs) in APC develop tens (attenuated familial adenomatous polyposis [AFAP]) to innumerable (classic FAP) adenomatous polyps in their colon and are at significantly increased lifetime risk of colorectal cancer. Up to 10% of FAP and up to 50% of patients with AFAP who have undergone DNA-only multigene panel testing (MGPT) do not have an identified PV in APC. We seek to demonstrate how the addition of RNA sequencing run concurrently with DNA can improve detection of germline PVs in individuals with a clinical presentation of AFAP/FAP. METHODS: We performed a retrospective query of individuals tested with paired DNA-RNA MGPT from 2021 to 2022 at a single laboratory and included those with a novel APC PV located in intronic regions infrequently covered by MGPT, a personal history of polyposis, and family medical history provided. All clinical data were deidentified in this institutional review board-exempt study. RESULTS: Three novel APC variants were identified in six families and were shown to cause aberrant splicing because of the creation of a deep intronic cryptic splice site that leads to an RNA transcript subject nonsense-mediated decay. Several carriers had previously undergone DNA-only genetic testing and had received a negative result. CONCLUSION: Here, we describe how paired DNA-RNA MGPT can be used to solve missing heritability in FAP families, which can have important implications in family planning and treatment decisions for patients and their families.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Humanos , Estudos Retrospectivos , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Testes Genéticos , Neoplasias Colorretais/genética , DNA
2.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35979650

RESUMO

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Assuntos
Genes BRCA2 , Sítios de Splice de RNA , Animais , Humanos , Camundongos , Processamento Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
NPJ Genom Med ; 7(1): 49, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008414

RESUMO

DNA germline genetic testing can identify individuals with cancer susceptibility. However, DNA sequencing alone is limited in its detection and classification of mRNA splicing variants, particularly those located far from coding sequences. Here we address the limitations of splicing variant identification and interpretation by pairing DNA and RNA sequencing and describe the mutational and splicing landscape in a clinical cohort of 43,524 individuals undergoing genetic testing for hereditary cancer predisposition.

4.
Front Immunol ; 12: 694243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335605

RESUMO

The immune response to COVID-19 infection is variable. How COVID-19 influences clinical outcomes in hospitalized patients needs to be understood through readily obtainable biological materials, such as blood. We hypothesized that a high-density analysis of host (and pathogen) blood RNA in hospitalized patients with SARS-CoV-2 would provide mechanistic insights into the heterogeneity of response amongst COVID-19 patients when combined with advanced multidimensional bioinformatics for RNA. We enrolled 36 hospitalized COVID-19 patients (11 died) and 15 controls, collecting 74 blood PAXgene RNA tubes at multiple timepoints, one early and in 23 patients after treatment with various therapies. Total RNAseq was performed at high-density, with >160 million paired-end, 150 base pair reads per sample, representing the most sequenced bases per sample for any publicly deposited blood PAXgene tube study. There are 770 genes significantly altered in the blood of COVID-19 patients associated with antiviral defense, mitotic cell cycle, type I interferon signaling, and severe viral infections. Immune genes activated include those associated with neutrophil mechanisms, secretory granules, and neutrophil extracellular traps (NETs), along with decreased gene expression in lymphocytes and clonal expansion of the acquired immune response. Therapies such as convalescent serum and dexamethasone reduced many of the blood expression signatures of COVID-19. Severely ill or deceased patients are marked by various secondary infections, unique gene patterns, dysregulated innate response, and peripheral organ damage not otherwise found in the cohort. High-density transcriptomic data offers shared gene expression signatures, providing unique insights into the immune system and individualized signatures of patients that could be used to understand the patient's clinical condition. Whole blood transcriptomics provides patient-level insights for immune activation, immune repertoire, and secondary infections that can further guide precision treatment.


Assuntos
Proteínas Sanguíneas/genética , COVID-19/imunologia , Interferon Tipo I/genética , Neutrófilos/fisiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Hospitalização , Humanos , Imunidade , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...